
Recovering Execution Data from Incomplete Observations

Peter Ohmann* David Bingham Brown* Ben Liblit* Thomas Reps*†

*University of Wisconsin–Madison, USA †GrammaTech, Inc., USA
{ohmann, bingham, liblit, reps}@cs.wisc.edu

Abstract
Due to resource constraints, tracing production applications
often results in incomplete data. Nevertheless, developers
ideally want answers to queries about the program’s execution
beyond data explicitly gathered. For example, a developer
may ask whether a particular program statement executed
during the run corresponding to a given failure report.

In this work, we investigate the problem of determining
whether each statement in a program executed, did not
execute, or may have executed, given a set of (possibly-
incomplete) observations. Using two distinct formalisms, we
propose two solutions to this problem. The first formulation
represents observations as regular languages, and computes
intersections over these languages using finite-state acceptors.
The second formulation encodes the problem as a set of
Boolean constraints, and uses answer set programming to
solve the constraints.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—debugging aids, test-
ing tools, tracing; D.2.8 [Software Engineering]: Metrics—
Performance measures

General Terms Algorithms, Languages, Theory

Keywords Debugging, program coverage, execution tracing

1. Introduction
Much prior research exists on gathering various levels of pro-
gram coverage [1, 5, 6, 22]. In practice, however, execution
observations are often incomplete, especially for deployed
applications. For example, to reduce run-time overheads, an
instrumented program might randomly sample observation
points [14] or trace only a small portion of execution [16].
Sampling-based profilers observe a program’s state at regu-
lar time intervals, but do not observe a static set of logging

points. In general, many different runs could produce the
same incomplete observation data.

In this work, we address what we call the incomplete-
observations problem. The goal is to extract statement-
coverage information from possibly incomplete observa-
tion data. Incomplete observations may result in incomplete
coverage information; our task is to reconstruct as much
information as possible given these limited observations. We
formalize the incomplete-observations problem in a way that
applies both to instrumentation-based and sampling-based
tools. The input is a failure report, which consists of:

1. a program P with control-flow graph (CFG) G

2. a node crash ∈ G.nodes marking the end of execution
(i.e., the crash location)

3. a set obsYes ⊆ G.nodes+ whose elements are non-empty
sequences over G.nodes. Each set element corresponds
to a sequence of statements that are observed to have
executed in the given order. Ordering between elements
of distinct obsYes sequences is unspecified.

4. a set anyObsYes ⊆ G.nodes defined as the set of program
locations appearing in any obsYes sequence

5. a set obsNo ⊆ G.nodes representing a set of program
locations that are known to not have executed.

Any node in G might appear in multiple obsYes sequences,
or more than once in any single obsYes sequence.

Consider two example cases. First, the csi-cc tool of
Ohmann and Liblit [16] gathers basic statement-coverage
data at a limited set of program locations. The information
gathered corresponds to the degenerate case in which each
obsYes sequence consists of one element: each observation is
independent, and ordering among observations is unspecified.
All instrumentation points that are not in anyObsYes are in
obsNo. Second, sampling-based profilers always yield an
obsYes consisting of a single sequence corresponding to
an incomplete trace. In this case, obsNo is always empty,
because the profiler does not provide information about
whether a statement never executes. The above formulation
cannot express the common case of reliable logging (e.g.,
with printf statements). See Section 5 for further discussion.

anyObsYes and obsNo are disjoint, but may not form a
partition of G.nodes. Typically, most CFG nodes are not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

WODA’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3909-4/15/10...$15.00

http://dx.doi.org/10.1145/2823363.2823368

19

mailto:ohmann@cs.wisc.edu
mailto:bingham@cs.wisc.edu
mailto:liblit@cs.wisc.edu
mailto:reps@cs.wisc.edu

/∗ ..A.. ∗/
while (/∗ ..B.. ∗/) {

if (/∗ ..C.. ∗/) {
if (/∗ ..D.. ∗/)

/∗ ..E.. ∗/
else if (/∗ ..F.. ∗/)

/∗ ..G.. ∗/
/∗ ..H.. ∗/

}
/∗ ..I.. ∗/

}
/∗ ..J.. ∗/
/∗ ..K.. ∗/

(a) Code skeleton

A

B

C D

E F

H G

I

J K

(b) Control-flow graph

crash = J

obsYes = {〈B,C, B〉}

obsNo = {F}

(c) Possible failure report for a single run

exeYes = {A, B,C, I, J}

exeNo = {F,G, K }

maybe = {D, E, H }

(d) Corresponding desired analysis result

Figure 1. An example program with crash data

directly observed at all; our challenge is to infer the behavior
of unobserved nodes based on the few that we did observe.

Specifically, an answer to the incomplete-observations
problem is a partition of G.nodes into subsets exeYes, exeNo,
and maybe. exeYes contains those nodes in G that necessarily
exist on all paths through G that are consistent with the failure
report. Conversely, exeNo contains those nodes that cannot
exist on any such path, while maybe contains nodes that exist
on some but not all paths consistent with the failure report.
A path r is consistent with a failure report if (i) r |r | = crash,
(ii) no node from obsNo occurs in r, and (iii) every obsYes
sequence is a subsequence of r. Suppose that f is a failure
report and R = {paths through G consistent with f }. Then,

exeYes = {m | ∀ r ∈ R,m occurs in r }

exeNo = {m | ∀ r ∈ R,m does not occur in r }

maybe = G.nodes − exeYes − exeNo

Figure 1a shows an example code skeleton, and Figure 1b
shows the corresponding CFG. Figure 1c gives partial trace
information from an example (crashing) run of the program;
the program crashes at statement J after observing the execu-
tion of statement B, followed by the execution of statement
C, followed by another execution of statement B. Statement
F is a member of obsNo; thus, F did not execute on this run.
Figure 1d shows the ideal exeYes, exeNo, and maybe sets,
given the failure report in Figure 1c.

This problem is interesting for a variety of reasons. Testing
and debugging accounts for 50–75% of a software project’s
cost [9, 12, 21]. When debugging from failure reports, devel-
opers ask questions about the application’s execution, and a
developer may want to know which parts of his/her program
executed, and which parts did not execute. In a more foun-
dational sense, the incomplete-observations problem is an
example of partially-dynamic program analysis, and involves

extracting optimal information while reasoning in the pres-
ence of uncertainty. We discuss this topic further in Section 4.

2. Two Formulations
In this section, we describe two distinct approaches to solve
the incomplete-observations problem1. In both cases, our
approach separates the encoding of the program (in this case,
the CFG) from the encoding of observations specific to a
given run of the program. The analysis need only encode the
program’s CFG once. We encode any failure data (including
the crashing location) as additional constraints over paths in
the CFG, as represented in the appropriate formalism.

Our first formulation encodes a failure report using stan-
dard finite-state automata (FSA). In this approach, we express
paths in the CFG as strings in the language accepted by the
FSA. Our second formulation is based on answer set program-
ming (ASP) [15]. In this approach, we encode the execution
of each statement as a predicate in a logic program, and ex-
press a failure report as constraints over these predicates.
We believe that the formulations are equivalent. Section 3
provides evidence for (but no proof of) this claim.

2.1 Automata
A deterministic finite-state acceptor (FSA) is defined as
A = (Q, q0, F, Σ, δ) where:

• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final (i.e., accepting) states,
• Σ is a finite alphabet of symbols, and
• δ : Q × Σ → Q is the deterministic transition function

1Complete formulations and additional details are available at http://
pages.cs.wisc.edu/~liblit/woda-2015/extended/.

20

https://pages.cs.wisc.edu/~liblit/woda-2015/extended/
https://pages.cs.wisc.edu/~liblit/woda-2015/extended/

start

A

B

C
D

I

E F

H GH

HI

K

J
B

(a) AG , the control-flow graph encoding

start

Σ − {J} J

Σ − {J}

J

(b) crash encoding

start

Σ − {F}

(c) obsNo encoding

start

Σ − {B}

B

Σ − {C}

C

Σ − {B}

B
Σ

(d) obsYes encoding

Figure 2. Finite-state acceptor formulation of the example from Figure 1

The language, L(A), recognized by A consists of all
strings s in Σ∗ such that there exists a corresponding sequence
of states v in Q∗ where v0 = q0, v |s | ∈ F, and ∀ i ∈
[0, |s | −1]. vi+1 = δ(vi, si). In other words, A accepts a string
in Σ∗ if it corresponds to legal transitions through A ending
in an accepting state.

For a program P with CFG G, we encode executions
through P as strings in a language LG whose alphabet Σ is
G.nodes. Encoding G as an FSA AG is straightforward. AG’s
states are the nodes of G with a new initial state q0; that is,
Q = G.nodes∪ {q0}. The transitions of AG correspond to the
edges of G: each (x, y) in G.edges contributes qx

y
−→ qy to δ.

In addition, if e is the entry node of G, δ contains a transition
q0

e
−→ qe . All states of AG except q0 are accepting states; that

is, F = Q−{q0}. This automaton is not specific to the location
of the crash site; it accepts any prefix of a valid execution, no
matter where the partial execution stops. Figure 2a shows the
FSA corresponding to the CFG in Figure 1b.

As defined above, L(AG) (the language accepted by AG)
reflects all possible paths in G, without regard to crash,
obsNo, or obsYes. To incorporate these items, we create
additional FSAs: one for crash, one for obsNo, and one for
each entry in obsYes. These FSAs serve to further constrain
the set of possible paths. Let C be the set of additional FSAs
representing these constraints, and let AC

G
be the intersection

of AG with all c ∈ C. Then AC
G

is the automaton that
recognizes only the paths through G that are consistent with
the given failure report.

We derive these additional constraint FSAs from a failure
report as follows. To encode the crash site, we create an

FSA that accepts any input string ending in crash. Figure 2b
shows this FSA for our example. The obsNo constraint merely
asserts that no element of obsNo appears in an accepted string;
Figure 2c encodes this constraint. Constraint FSAs for obsYes
entries encode ordered statement observations and allow any
number of transitions on Σ after the final observed statement.
Figure 2d encodes the 〈B,C, B〉 constraint from the example
in Figure 1. Note that the automata from Figures 2b–2d allow
the crashing CFG node, J, to occur more than once during
an execution. This behavior is impossible for the CFG from
Figure 2a, but is possible (and even necessary) in general.

To compute exeYes, exeNo, and maybe, we then iterate
through each n ∈ G.nodes and construct two n-specific
constraint automata that serve as probes for AC

G
. Let obsYesn

be the obsYes automaton that corresponds to the single-
element sequence 〈n〉. Let obsNon be the obsNo automaton
corresponding to the singleton set {n}. If L(AC

G
∩ obsYesn)

is empty, then n ∈ exeNo. If L(AC
G
∩ obsNon) is empty, then

n ∈ exeYes. Otherwise, n ∈ maybe.
Intersecting the constraint automata (specifically the

obsYes automata) could result in an exponential increase in
the number of transitions in AC

G
. Our evaluation (Section 3)

indicates that this can be a problem in practice.
As described, this approach applies to intraprocedural

analysis. However, our formulation also extends to interpro-
cedural analysis. In this case, G is the interprocedural CFG
of P, meaning that call statements have edges to the corre-
sponding function entry, and return statements in the callee
have edges to all corresponding return locations in the caller.
If we directly apply our intraprocedural approach to the in-

21

terprocedural CFG (with our initial state preceding the entry
to the main function), we obtain a context-insensitive result.
That is, this result does not enforce, for each matched path r
through G, that return statements in r are correctly matched
with corresponding call statements earlier in r. Obtaining
a context-sensitive result requires that we move to a more
powerful automaton formulation, such as visibly pushdown
automata or nested word automata [3]. As noted by Alur and
Madhusudan, both structures can be checked for emptiness
and are closed under intersection. Future evaluation will de-
termine if more expressive automata increase analysis costs.

2.2 Answer Set Programming (ASP)
There has been an enormous amount of work in recent years
on using Boolean satisfiability (SAT) solvers in program
analysis and model checking. A SAT solver attempts to find
a satisfying assignment to a set of Boolean variables given
constraints over those variables. For a CFG G, we would
like to encode information about a path r (consistent with
our failure report) with one Boolean variable for each n ∈
G.nodes to represent whether n occurs in r. Unfortunately,
our problem requires that we reason about graph connectivity;
thus, our solution cannot be expressed in first-order logic.

Instead, we must use a recursive language for constraints,
and chose the logic programming paradigm. Fortunately, our
problem has a finite number of atoms; we can use ASP to
convert our logic program to a Boolean ground theory in
conjunctive normal form. This process, grounding, serves
as an interface to a SAT solver. The syntax used in our
implementation (the Gringo [10] grounder’s native format)
is inspired by other logic-programming languages, such as
Datalog, though its evaluation differs significantly. Rather
than directly evaluating a logic program, an ASP system first
converts the program into SAT form, allowing it to benefit
from existing SAT technology.

Our logic program separates the encoding of G’s structure,
the constraints from items 2–5 of a failure report, and the
general constraints for an incomplete-observations problem.
The node, edge, obsNo, anyObsYes, and crash predicates
are derived directly from a failure report. The order predicate
encodes pairwise orderings expressed by obsYes sequences.
For example, the 〈B,C, B〉 constraint from Figure 1 would
require two facts: “order(b, c).” and “order(c, b).”

Several program-independent background constraints sup-
port this simple encoding scheme, as shown in Figure 3. In
the end, each satisfying model for our constraints describes a
set of paths through G consistent with a specific failure report.
Note that any cyclic CFG has an infinite number of paths.
However, a model represents a family of paths as defined by
visited and connected. In the worst case, the number of such
models is exponential; we revisit this below.

Line 1 in Figure 3 states that the remaining definitions
of visited specify a partial (rather than complete) set of
truth values. In other words, the rules in lines 3–6 may not
entirely determine the status of some nodes. These rules

1 0 { visited(X) } 1 :− node(X).
2

3 visited(X) :− entry(X).
4 visited(X) :− crash(X).
5 −visited(X) :− obsNo(X).
6 visited(X) :− anyObsYes(X).
7

8 connected(X, X) :− visited(X).
9 connected(X, Z) :− visited(X), edge(X, Y), connected(Y, Z).

10

11 :− order(X, Y), not connected(X, Y).
12 :− entry(E), visited(X), not connected(E, X).
13 :− crash(C), visited(X), not connected(X, C).
14 :− anyObsYes(O), visited(X),
15 not connected(X, O), not connected(O, X).

Figure 3. Answer set programming base formulation

encode basic constraints over nodes visited on legal paths:
we must visit the program’s entry (line 3) and the crash point
(line 4), we must not visit obsNo entries (line 5), and we must
visit all anyObsYes entries (line 6). Next, the logic program
defines connectivity: a visited node is always connected to
itself (line 8), and two nodes are inductively connected if
we can cross one edge from the visited start node to an
intermediate node, and then connect this intermediate node
to the destination (line 9). Note that two nodes are only
connected if they are connected on paths corresponding to
the generated model. In other words, connected does not
express general properties of G, but, rather, properties of a
set of paths through G (with identical visited sets).

The final rules in lines 11–15 express other relationships
between path connectivity and our observations. Each of these
“headless” rules specifies a set of forbidden configurations;
that is, none of the stated conditions are satisfied in any valid
model. Line 11 states that ordered obsYes entries must be
connected. The next two rules assert that all visited nodes are
connected to both the program entry (line 12) and the crash
point (line 13). The final rule on lines 14–15 enforces paths
between each obsYes sequence: every visited node must be
connected with every anyObsYes entry.

Given these constraints, we can compute exeYes, exeNo,
and maybe by determining if each n ∈ G.nodes may or
may not be visited in generated models. Recall that, in the
worst case, our program generates an exponential number
of models. However, rather than iterating over models, we
instead iteratively check satisfiability for both visiting and
not visiting each n ∈ G.nodes. Specifically, we begin with
the complete, conjoined set of constraints C from a failure
report and Figure 3. Then, for each n ∈ G.nodes, we form
the augmented set of constraints: (i) Cyes

n by adding the
constraint “visited(n).” to C, and (ii) Cno

n by adding the
constraint “−visited(n).” to C. If Cyes

n is unsatisfiable, then
n ∈ exeNo. If Cno

n is unsatisfiable, n ∈ exeYes. If both Cyes
n

and Cno
n are satisfiable, then n ∈ maybe.

22

Table 1. Resource usage. Entries labeled “>5 m” ran out of memory before hitting our 3 hour timeout.

Time Memory

crash only csi-cc info crash only csi-cc info

Subject LoC FSA ASP FSA ASP FSA ASP FSA ASP

Figure 1 13 <1 s <1 s <1 s <1 s 19 MB 18 MB 19 MB 18 MB
schedule 413 4.1 s 53 m 3.5 s 34 m 41 MB 218 MB 41 MB 197 MB
ccrypt 5280 3.0 m >3 h >5 m >3 h 79 MB ≈12 GB ≥32 GB ≈9.5 GB

As in Section 2.1, our approach is intraprocedural, but, if
G is the interprocedural CFG of P, we can obtain a context-
insensitive interprocedural result by applying our analysis to
the CFG (with the entry predicate attached to the entry node
for the main function). Prior work [18, 20] uses other logic-
programming paradigms (particularly Datalog) for context-
sensitive program analyses. That work provides the basis for
extending our analysis to be context-sensitive.

3. Evaluation
We performed a preliminary evaluation to assess the feasibil-
ity of the techniques described in Section 2 with two primary
goals. First, we wanted to check our claim that our two formu-
lations are equivalent. Second, we wanted to investigate the
memory and running-time costs of computing exeYes, exeNo,
and maybe using each technique.

For our automaton-based formulation from Section 2.1, we
used the OpenFst library [2]. We chose the Gringo grounder
[10] with its accompanying Clasp [11] SAT solver for the
implementation of our ASP formulation from Section 2.2.
CodeSurfer 2.2p0 [4] produces our CFGs.

We used three applications: a toy program conforming
to the skeleton code from Figure 1, schedule (a priority
scheduler from the Siemens benchmark suite), and ccrypt
(an encryption program). We hand-crafted the toy program;
schedule is taken from the Software-artifact Infrastructure
Repository [19]; ccrypt is a real, released program. The defect
in schedule was seeded, while the defect in ccrypt arose
naturally. For each application, we ran our analysis for one
failing run from the program’s test suite. First, we used failure
reports consisting of only the crash location. Second, we
used failure reports containing call-site coverage information
as gathered by the csi-cc tool developed by Ohmann and
Liblit [16]. This tool gathers unordered coverage data with no
missed observations; the tool instruments all call sites, and
each call site appears either in obsNo or as a single-element
sequence in obsYes. All experiments were run on a 3.1 GHz
quad-core Intel Core i5 with 32 GB of RAM running Red
Hat Enterprise Linux 6.6. For these experiments, we used
interprocedural CFGs, but context-insensitive analyses.

First, we verified that our FSA and ASP implementations
produced the same exeYes, exeNo, and maybe results for
the failure reports from our test cases. In all subjects that

completed in under three hours, we obtained identical results.
We also manually verified that these results matched the
expected output. Next, we evaluated the time and memory
usage for computing exeYes, exeNo, and maybe based on
the failure reports for each test case; the results are shown
in Table 1. We measured real time and maximum resident
memory size. We report the mean of three runs, though
all trials were fairly consistent. For small cases such as
Figure 1, both approaches work well. For larger programs,
the automaton implementation was clearly faster in these
experiments; however, with csi-cc profiling information, we
observe a substantial increase in FSA size when adding the
obsYes constraints for the ccrypt benchmark. Conversely, our
ASP implementation is currently slower and hits our time
threshold for ccrypt; however, all our test cases fit in system
memory. Thus, had we allowed substantially more time, our
ASP implementation would likely have completed all tests
without running out of memory.

Our current implementations are very naïve, and we made
no efforts to optimize our techniques; thus, we suspect that
these results could be substantially improved. Nevertheless,
these experiments serve to highlight the strengths and weak-
nesses of each approach, and help to guide future research.

4. Related Work
Prior work on program coverage adds instrumentation selec-
tively, leveraging the fact that observed execution at one pro-
gram point may imply execution elsewhere [1, 5, 22]. Rather
than computing these implications during instrumentation,
our approach solves exactly the problem of computing them
after-the-fact. Also, prior approaches produce instrumenta-
tion that ensures full coverage information during execution.
Our technique allows for incomplete data: observations may
leave some information unknown.

Prior work has used symbolic execution to replay failing
executions [8, 13, 27]. While our work similarly attempts to
recover execution data from failing runs, we solve a different
problem. We recover information matching all runs consistent
with traced data, while replay techniques synthesize one
complete run consistent with traced data.

Nevertheless, we could potentially adapt existing symbolic-
execution-based approaches to eliminate some maybe paths
that are infeasible based on data values observed at the time

23

of the crash. Yuan et al. [25, 26] apply this idea to run-time
logs. They use the locations and content of log messages
to infer must, may, and must-not paths through a program.
Our work considers log messages as one example of possible
probe points, but also handles unordered trace data, such as
that produced by Ohmann and Liblit [16]. We also solve a
different problem: we mark each program statement as must,
may, or must-not, while Yuan et al. infer partial execution
paths that must, may, or must not have executed.

The incomplete-observations problem closely resembles
the problem of evaluating a formula with respect to a partial
(i.e., incomplete) model. For the latter, the best possible
result is given by the formula’s supervaluational meaning
[7, 17, 23, 24]. In our context, the encoding of the failure
report plays the role of the incomplete model, and a probe—
e.g., the automaton for obsYesn—plays the role of the formula
to be evaluated. We are populating exeYes, exeNo, and maybe
according to the supervaluational meaning of these queries.

5. Conclusions and Future Work
In this paper, we present an approach to derive unobserved
execution information from failing applications with incom-
plete observation data. We present two distinct encodings of
failure reports, and show how these encodings can be applied
as solutions to the incomplete-observations problem.

We are currently evaluating these two techniques more
extensively. Neither approach currently supports interproce-
dural context-sensitivity; we plan to investigate methods by
which this could be added. The present failure model does not
cover the common case of a statement log without missing
observations. We could model such situations by modifying
obsYes such that, for all paths r through G, each occurrence
of an o ∈ anyObsYes in r must correspond to an entry in each
obsYes sequence. This requires only minor implementation
changes. For example, in Figure 2d, we would merely relabel
each self-loop as “Σ − {B,C}”.

Acknowledgments
This research was supported in part by NSF grants CCF-
0904371, CCF-0953478, CCF-1217582, and CCF-1420866.
Opinions, findings, conclusions, or recommendations ex-
pressed herein are those of the authors and do not necessarily
reflect the views of NSF or other institutions.

References
[1] H. Agrawal. Dominators, super blocks, and program coverage.

In POPL, 1994.
[2] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri.

OpenFst: A general and efficient weighted finite-state trans-
ducer library. In CIAA, 2007.

[3] R. Alur and P. Madhusudan. Adding nesting structure to words.
J. ACM, 56(3), 2009.

[4] P. Anderson, T. W. Reps, and T. Teitelbaum. Design and
implementation of a fine-grained software inspection tool.
IEEE Trans. Software Eng., 29(8):721–733, 2003.

[5] T. Ball and J. R. Larus. Optimally profiling and tracing
programs. TOPLAS, 1994.

[6] T. Ball and J. R. Larus. Efficient path profiling. In MICRO,
1996.

[7] G. Bruns and P. Godefroid. Generalized model checking:
Reasoning about partial state spaces. In CONCUR, 2000.

[8] Y. Cao, H. Zhang, and S. Ding. SymCrash: selective recording
for reproducing crashes. In ASE, 2014.

[9] B. Gauf and E. Dustin. The case for automated software testing.
Journal of Software Technology, 10(3):29–34, 2007.

[10] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances
in gringo series 3. In LPNMR, 2011.

[11] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven
answer set solving: From theory to practice. Artif. Intell., 187:
52–89, 2012.

[12] B. Hailpern and P. Santhanam. Software debugging, testing,
and verification. IBM Syst. J., 41(1):4–12, Jan. 2002.

[13] W. Jin and A. Orso. Bugredux: reproducing field failures for
in-house debugging. In ICSE, 2012.

[14] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In PLDI, 2003.

[15] V. W. Marek and M. Truszczynski. Stable models and an
alternative logic programming paradigm. CoRR, 1998.

[16] P. Ohmann and B. Liblit. Lightweight control-flow instrumen-
tation and postmortem analysis in support of debugging. In
ASE, 2013.

[17] T. Reps, A. Loginov, and M. Sagiv. Semantic minimization of
3-valued propositional formulae. In LICS, 2002.

[18] T. W. Reps. Solving demand versions of interprocedural
analysis problems. In CC, 1994.

[19] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do. Software–
artifact infrastructure repository, Sept. 2006.

[20] Y. Smaragdakis and M. Bravenboer. Using Datalog for fast
and easy program analysis. In Datalog 2010. Revised Selected
Papers, 2011.

[21] G. Tassey. The economic impacts of inadequate infrastructure
for software testing. NIST, RTI Project, 7007(011), 2002.

[22] M. M. Tikir and J. K. Hollingsworth. Efficient online computa-
tion of statement coverage. Journal of Systems and Software,
78(2), 2005.

[23] B. van Fraassen. Singular terms, truth-value gaps, and free
logic. J. Phil., 63(17):481–495, Sept. 1966.

[24] G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical
characterizations of heap abstractions. Trans. on Comp. Logic,
8(1), 2007.

[25] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy.
SherLog: error diagnosis by connecting clues from run-time
logs. In ASPLOS, 2010.

[26] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving
software diagnosability via log enhancement. In ASPLOS,
2011.

[27] C. Zamfir and G. Candea. Execution synthesis: a technique for
automated software debugging. In EuroSys, 2010.

24

	Introduction
	Two Formulations
	Automata
	Answer Set Programming (ASP)

	Evaluation
	Related Work
	Conclusions and Future Work

